Лазерная коррекция зрения lasik: какой из эксимерных лазеров лучше?

ПОСЛЕДНИЕ ПОСТЫ

Его уникальность

Было установлено, что эксимерная молекула производит лазерное излучение за счет того, что она находится в возбужденном «притягивающем» состоянии, а также в «отталкивающем». Это действие можно объяснить тем, что ксенон или криптон (благородные газы) имеют высокую инертность и, как правило, никогда не образуют химических соединений. Электрический разряд приводит их в возбужденное состояние, вследствие чего они могут образовать молекулы либо между собой, либо с галогенами, например, хлором или фтором. Появление молекул, находящихся в возбужденном состоянии, создает, как правило, так называемую инверсию населенностей, и такая молекула отдает свою энергию, представляющую собой вынужденное или спонтанное излучение. После этого данная молекула возвращается в основное состояние и распадается на атомы. Устройство эксимерного лазера уникально.

Термин «димер» обычно употребляется тогда, когда между собой соединяются одинаковые атомы, однако в большинстве эксимерных лазеров современности используются соединения благородных газов и галогенов. Тем не менее димерами называют и эти соединения, применяемые для всех лазеров подобной конструкции. Как работает эксимерный лазер? Это мы сейчас рассмотрим.

Противопоказания к процедуре коррекции зрения эксимерным лучом

Коррекция зрения эксимерным лазером показана не всем людям, страдающим нарушениями зрения. Запретом на применение данной процедуры являются:

  • офтальмологические заболевания (глаукома, катаракта, деформация сетчатки);
  • заболевания, которые препятствуют нормальному заживлению ран (артрит, сахарный диабет, аутоиммунные заболевания и т.д.);
  • болезни сердца и сосудистой системы;
  • монокулярность;
  • отслойка сетчатки глаза;
  • возрастная пресбиопсия;
  • беременность и грудное вскармливание;
  • детский возраст до 18 лет;
  • спазм аккомодации;
  • прогрессирующие изменения рефракции глаза;
  • воспалительные процессы в организме, в том числе касающиеся непосредственно глаз.

Что такое лазер?

Лазер – это особый квантовый генератор, излучающий узкий световой пучок. Лазерные приспособления открывают невероятные возможности передач энергий на разные расстояния с высокой скоростью. Обычный же свет, который способен восприниматься человеческим зрением, представляет собой небольшие пучки света, которые распространяются в разные стороны. Если эти пучки сконцентрировать при помощи линзы либо зеркала, получится большой пучок световых частиц, но даже он не может сравниться с лазерным лучом, который состоит из квантовых частиц, что может быть достигнуто только путем активации атомов той среды, которая лежит в основе лазерного излучения.

Устройство и принцип действия лазеров

Каждая лазерная система состоит из активной среды, помещенной между парой оптически параллельных и высокоотражающих зеркал, одно из которых полупрозрачное, и источника энергии для ее накачки. В качестве среды усиления может выступать твердое тело, жидкость или газ, которые обладают свойством усиливать амплитуду световой волны, проходящей через него, вынужденным излучением с электрической или оптической накачкой. Вещество помещается между парой зеркал таким образом, что свет, отражающийся в них, каждый раз проходит через него и, достигнув значительного усиления, проникает сквозь полупрозрачное зеркало.

Эксимерные лазеры

Эксимеры представляют собой такие молекулы как ArF, KrF, XeCl, которые имеют разделенное основное состояние и стабильны на первом уровне. Принцип действия лазера следующий. Как правило, в основном состоянии число молекул мало, поэтому прямая накачка из основного состояния не представляется возможной. Молекулы образуются в первом возбужденном электронном состоянии путем соединения обладающих большой энергией галогенидов с инертными газами. Населенность инверсии легко достигается, так как число молекул на базовом уровне слишком мало, по сравнению с возбужденным. Принцип действия лазера, кратко говоря, состоит в переходе из связанного возбужденного электронного состояния в диссоциативное основное состояние. Населенность в основном состоянии всегда остается на низком уровне, потому что молекулы в этой точке диссоциируют на атомы.

Устройство и принцип действия лазеров состоит в том, что разрядную трубку наполняют смесью галогенида (F2) и редкоземельного газа (Ar). Электроны в ней диссоциируют и ионизируют молекулы галогенида и создают отрицательно заряженные ионы. Положительные ионы Ar+ и отрицательные F- реагируют и производят молекулы ArF в первом возбужденном связанном состоянии с последующим их переходом в отталкивающее базовое состояние и генерацией когерентного излучения. Эксимерный лазер, принцип действия и применение которого мы сейчас рассматриваем, может применяться для накачки активной среды на красителях.

Накачка электронным пучком

Полупроводниковый квантовый генератор

Лазеры на квантовых ямах недороги, позволяют массовое производство и легко масштабируются. Принцип действия полупроводникового лазера основан на использовании диода с p-n-переходом, который производит свет определенной длины волны путем рекомбинации носителя при положительном смещении, подобно светодиодам. LED излучают спонтанно, а лазерные диоды – вынужденно. Чтобы выполнить условие инверсии заселенности, рабочий ток должен превышать пороговое значение. Активная среда в полупроводниковом диоде имеет вид соединительной области двух двумерных слоев.

Принцип действия лазера данного типа таков, что для поддержания колебаний никакого наружного зеркала не требуется. Отражающая способность, создаваемая благодаря показателю преломления слоев и внутреннему отражению активной среды, для этой цели достаточна. Торцевые поверхности диодов скалываются, что обеспечивает параллельность отражающих поверхностей.

Соединение, образованное полупроводниковыми материалами одного типа, называется гомопереходом, а созданное соединением двух разных – гетеропереходом.

Полупроводники р и n типа с высокой плотностью носителей образуют р-n-переход с очень тонким (≈1 мкм) обедненным слоем.

Газовый лазер

Принцип действия и использование лазера этого типа позволяет создавать устройства практически любой мощности (от милливатта до мегаватта) и длин волн (от УФ до ИК) и позволяет работать в импульсном и непрерывном режимах. Исходя из природы активных сред, различают три типа газовых квантовых генераторов, а именно атомные, ионные, и молекулярные.

Большинство газовых лазеров накачиваются электрическим разрядом. Электроны в разрядной трубке ускоряются электрическим полем между электродами. Они сталкиваются с атомами, ионами или молекулами активной среды и индуцируют переход на более высокие энергетические уровни для достижения состояния населения инверсии и вынужденного излучения.

Двухуровневые среды

Рассмотрим принцип действия лазера с активной средой, атомы которой имеют только два уровня энергии: возбужденный E2 и базовый Е1. Если атомы с помощью любого механизма накачки (оптического, электрического разряда, пропускания тока или бомбардировки электронами) возбуждаются до состояния E2, то через несколько наносекунд они вернутся в основное положение, излучая фотоны энергии hν = E2 – E1. Согласно теории Эйнштейна, эмиссия производится двумя различными способами: либо она индуцируется фотоном, либо это происходит спонтанно. В первом случае имеет место вынужденное излучение, а во втором – спонтанное. При тепловом равновесии вероятность вынужденного излучения значительно ниже, чем спонтанного (1:1033), поэтому большинство обычных источников света некогерентны, а лазерная генерация возможна в условиях, отличных от теплового равновесия.

Даже при очень сильной накачке населенность двухуровневых систем можно лишь сделать равной. Поэтому для достижения инверсной населенности оптическим или иным способом накачки требуются трех- или четырехуровневые системы.

Многоуровневые системы

Каков принцип действия трехуровневого лазера? Облучение интенсивным светом частоты ν02 накачивает большое количество атомов с самого низкого уровня энергии E до верхнего Е2. Безызлучательный переход атомов с E2 до E1 устанавливает инверсию населенности между E1 и E, что на практике возможно только, когда атомы длительное время находятся в метастабильном состоянии E1, и переход от Е2 до Е1 происходит быстро. Принцип действия трехуровневого лазера заключается в выполнении этих условий, благодаря чему между E и E1 достигается инверсия населенности и происходит усиление фотонов энергией Е1-Е индуцированного излучения. Более широкий уровень E2 мог бы увеличить диапазон поглощения длин волн для более эффективной накачки, следствием чего является рост вынужденного излучения.

Трехуровневая система требует очень высокой мощности накачки, так как нижний уровень, задействованный в генерации, является базовым. В этом случае для того, чтобы произошла инверсия населенности, до состояния E1 должно быть накачано более половины от общего числа атомов. При этом энергия расходуется впустую. Мощность накачки можно значительно уменьшить, если нижний уровень генерации не будет базовым, что требует, по крайней мере, четырехуровневой системы.

В зависимости от природы активного вещества, лазеры подразделяются на три основные категории, а именно, твердый, жидкий и газовый. С 1958 года, когда впервые наблюдалась генерация в кристалле рубина, ученые и исследователи изучили широкий спектр материалов в каждой категории.

Нанесение акрила

Теперь рассмотрим самое главное — как покрыть ванну акрилом в домашних условиях. Для начала, в нее необходимо налить сильно горячую воду, чтобы она прогрелась. Нанесение следует выполнять поступательным выливанием смеси по всему периметру и распределяя ее равномерным слоем с помощью шпателя. Излишки можно удалить через отверстие слива.

Участку в области сливного отверстия следует уделить особое внимание, здесь акриловый слой должен быть хорошо загерметизирован. Дно стоит формировать сразу же, не позволяя массе затвердеть

Лучше наносить ее за определенное количество времени в соответствии с окружающей температурой:

  • 15-20 градусов — 50 минут;
  • 25 градусов — 40 минут;
  • Более 30 градусов — 30 минут.

https://youtube.com/watch?v=oDAlOeX5dyo

Жидкостный лазер

По сравнению с твердыми веществами, жидкости более однородны, и обладают большей плотностью активных атомов, по сравнению с газами. В дополнение к этому, они не сложны в производстве, позволяют просто отводить тепло и могут быть легко заменены. Принцип действия лазера состоит в использовании в качестве активной среды органических красителей, таких как DCM (4-дицианометилен-2-метил-6-p- диметиламиностирил-4Н-пиран), родамина, стирила, LDS, кумарина, стильбена, и т. д., растворенных в надлежащем растворителе. Раствор молекул красителя возбуждается излучением, длина волны которого обладает хорошим коэффициентом поглощения. Принцип действия лазера, кратко говоря, заключается в генерации на большей длине волны, называемой флуоресценцией. Разница между поглощенной энергией и излучаемыми фотонами используется безызлучательными энергетическими переходами и нагревает систему.

Более широкая полоса флуоресценции жидкостных квантовых генераторов обладает уникальной особенностью – перестройкой длины волны. Принцип действия и использование лазера этого типа как настраиваемого и когерентного источника света, приобретает все большее значение в спектроскопии, голографии, и в биомедицинских приложениях.

Недавно квантовые генераторы на красителях стали использоваться для разделения изотопов. В этом случае лазер избирательно возбуждает один из них, побуждая вступить в химическую реакцию.

Лечение трихиаза

При лечении данной болезни действия врачей направлены как на устранение косметологического дефекта, так и на недопущение изъявления роговой оболочки.

Важно! В настоящее время существует несколько методов лечения заболевания, но основным из них является операционное вмешательство.

В этом случае производятся хирургические манипуляции, возвращающие нормальное направление роста ресниц.

Существует несколько видов таких мероприятий:

  1. Эпиляция.
    Несмотря на широкое распространение этого метода, часто он оказывается малоэффективным.
    Это обусловлено тем, что проводить данную процедуру необходимо постоянно, и для лечения трихиаза эпиляцию нужно делать как минимум раз в месяц.
    При продолжительном лечении таким способом ресницы теряют пигмент и истончаются, поэтому другие методы лечения применять затруднительно.
  2. Диатермокоагуляция.
    Это так называемый «точечный метод», при котором можно избавиться лишь от отдельных ресниц, растущих в неправильном направлении.
    Удаление таких волосков производится посредством воздействия игольчатого электрода.
    Он вводится в фолликулу проблемного волоска, доходя до его луковицы и при воздействии электромагнитного импульса убивает его.
    В случае, если требуется удалить ряд волосяных луковиц, такой метод требует больших временных затрат и по этой причине считается нецелесообразным.
    Обычно такой способ используется в качестве дополнительного после проведения полной резекции, и позволяет удалить оставшиеся отдельные волоски, растущие в неправильном направлении.
  3. Аргонлазерная коагуляция.
    Этот метод также эффективен только в тех случаях, когда в неправильном направлении растут несколько отдельно взятых ресниц.
    Используется метод только от места выхода волоска из века на конъюнктиву, операция выполняется в направлении роста ресницы.
    В течение реабилитационного периода после такой операции пациенту необходимо применять антисептические мази или капли, так как возможны последствия в виде воспалительных заболеваний.
  4. Сквозная резекция пораженного участка на краю века.
    Это наиболее эффективный метод при необходимости лечения трихиаза на обширном участке.
    В данном случае производится прямое сближение краев века, после чего производится послойное ушивание.

В запущенных случаях для ушивания используется донорская ткань, взятая с губ самого пациента. В особо тяжелых ситуациях, когда требуется удаление части века, для пересадки используют кусочки тканей, взятых у пациента с брови.

Иногда после такого вмешательства волоски все равно могут расти в неправильном направлении, и тогда дополнительно назначается диатермокоагуляция или аргонлазерная терапия.

Первопроходцы

Теодор Мейман был первым, кто продемонстрировал принцип действия рубинового лазера, основанный на оптической накачке с помощью лампы-вспышки синтетического рубина, производившего импульсное когерентное излучение с длиной волны 694 нм.

В 1960 г. иранские ученые Джаван и Беннетт создали первый газовый квантовый генератор с использованием смеси газов He и Ne в соотношении 1:10.

В 1962 году Р. Н. Холл продемонстрировал первый диодный лазер из арсенида галлия (GaAs), излучавший на длине волны 850 нм. Позже в том же году Ник Голоняк разработал первый полупроводниковый квантовый генератор видимого света.

Твердотельный лазер

Принцип действия основан на использовании активной среды, которая образуется путем добавления в изолирующую кристаллическую решетку металла переходной группы (Ti+3, Cr+3, V+2, Со+2, Ni+2, Fe+2, и т. д.), редкоземельных ионов (Ce+3, Pr+3, Nd+3, Pm+3, Sm+2, Eu+2,+3, Tb+3, Dy+3, Ho+3, Er+3, Yb+3, и др.), и актиноидов, подобных U+3. Энергетические уровни ионов отвечают только за генерацию

Физические свойства базового материала, такие как теплопроводность и тепловое расширение, имеют важное значение для эффективной работы лазера. Расположение атомов решетки вокруг легированного иона изменяет ее энергетические уровни

Различные длины волн генерации в активной среде достигаются путем легирования различных материалов одним и тем же ионом.

Ссылка на основную публикацию